Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration
نویسندگان
چکیده
This study aims to predict daily carbon monoxide (CO) concentration in the atmosphere of Tehran by means of developed artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models. Forward selection (FS) and Gamma test (GT) methods are used for selecting input variables and developing hybrid models with ANN and ANFIS. From 12 input candidates, 7 and 9 variables are selected using FS and GT, respectively. Evaluation of developed hybrid models and its comparison with ANN and ANFIS models fed with all input variables shows that both FS and GT techniques reduce not only the output error, but also computational cost due to less inputs. FSeANN and FSeANFIS models are selected as the best models considering R2, mean absolute error and also developed discrepancy ratio statistics. It is also shown that these two models are superior in predicting pollution episodes. Finally, uncertainty analysis based on Monte-Carlo simulation is carried out for FSeANN and FSeANFIS models which shows that FSeANN model has less uncertainty; i.e. it is the best model which forecasts satisfactorily the trends in daily CO concentration levels. 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Carbon Monoxide Prediction in the Atmosphere of Tehran Using Developed Support Vector Machine
Air quality prediction is highly important in view of the health impacts caused by exposure to air pollutants in urban air. This work has presented a model based on support vector machine (SVM) technique to predict daily average carbon monoxide (CO) concentrations in the atmosphere of Tehran. Two types of SVM regression models, i.e. -SVM and -SVM techniques, were used to predict average daily C...
متن کاملCarbon Monoxide Prediction in the Atmosphere of Tehran Using Developed Support Vector Machine
Air quality prediction is highly important in view of the health impacts caused by exposure to air pollutants in urban air. This work has presented a model based on support vector machine (SVM) technique to predict daily average carbon monoxide (CO) concentrations in the atmosphere of Tehran. Two types of SVM regression models, i.e. -SVM and -SVM techniques, were used to predict average daily C...
متن کاملPrediction of Bubble Point Pressure & Asphaltene Onset Pressure During CO2 Injection Using ANN & ANFIS Models
Although CO2 injection is one of the most common methods in enhanced oil recovery, it could alter fluid properties of oil and cause some problems such as asphaltene precipitation. The maximum amount of asphaltene precipitation occurs near the fluid pressure and concentration saturation. According to the description of asphaltene deposition onset, the bubble point pressure has a very special imp...
متن کاملPrediction and Optimization of the Effects of Combining Ultrasonic Waves and Solvent on the Viscosity of Residue Fuel Oil by ANN and ANFIS
In the present work, the influences of temperature, solvent concentration and ultrasonic irradiation time were numerically analyzed on viscosity reduction of residue fuel oil (RFO). Ultrasonic irradiation was applied at power of 280 W and low frequency of 24 kHz. The main feature of this research is prediction and optimization of the kinematic viscosity data. The measured results of eighty-four...
متن کاملAdaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis
The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010